
Quiz 3 Solutions

1. Decide with justification whether∫ 1
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x
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converges (Hint: do not try to compute an antiderivative for the integrand).

Solution: We have
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> 0. By lecture

∫ 1

0

1

x3/2
dx

diverges since
3

2
> 1, hence
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dx also diverges by the comparison test.

2. Find the length of the curve given by y = ln(cosx) where 0 ≤ x ≤ π

4
.

(You may use

∫
secx dx = ln(secx+ tanx) + C without proof)

Solution: The length is given by
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secx > 0 on [0, π
4
]

=
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secx dx

= ln(secx+ tanx)
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0

= ln(
√
2 + 1)− ln(1 + 0) = ln(

√
2 + 1).

3. Find T4 for the function f(x) = x2−1 on the interval [1, 3] (i.e. approximate

the integral

∫ 3

1
x2 − 1 dx using the trapezoid rule with n = 4 subintervals).



Solution: x0 = 1, x1 =
3

2
, x2 = 2, x3 =
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2
, x4 = 3 and ∆x =

1

2
. Then
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